Может ли гореть эпоксидная смола и при каких температурах

Бытовые варианты

Числовой индекс в названии смол российского производства означает степень их текучести в неактивированном состоянии, то есть ЭД-22 более жидкая, чем ЭД-20. Среди заявленных свойств у этих смол значится и негорючесть. Рассматривая их молекулярную структуру, мы увидим соединение-олигомер, в основе которого диглицидиловый эфир дифинололпропана. В качестве отвердителя для обеих ЭД (эпоксиднодианов) может выступать:

  • фенолформальдегиды;
  • ангидриды поликарбоновых кислот;
  • алифатические и ароматические амины;
  • полиамиды;
  • некоторые другие отвердители.

Катализаторами процесса полимеризации они не выступают: катализатор только инициирует реакцию, не вступая в нее сам, а все биоорганические отвердители являются активными участниками процесса, встраивая свободнорадикальные «хвосты» своих более простых, чем у эпоксидки, молекул в общую полимерную цепочку.

На этикетках отвердителей, которыми комплектуются смолы, всегда есть данные об их составе и при какой температуре можно смешивать оба компонента. Температурный показатель – один из главнейших, на который стоит ориентироваться при изготовлении изделий из эпоксидки или при заливке каких-то площадей ею. Отвердители ПЭПА относят к «холодным», это означает, что желательный диапазон температур, при которых происходит реакция их полимеризации с эпоксидной основой, не должен доходить до 150-200°C градусов. Потому что при этих температурах прочно и, казалось бы, навсегда отвердевшая смола начнет плавиться.

На деле это означает, что от длинных цепочек застывших молекул начинают отрываться самые слабые и легкие соединения. Стоит только где-то рядом появиться открытому пламени, эти вырвавшиеся из структуры застывшей и начавшей плавиться эпоксидки обрывки молекул вспыхивают и быстро сгорают при наличии притока кислорода. Но для этого температура должная подняться уже до 380-420°C градусов.

Если же в смоле был использован более «горячий» аминовый отвердитель ТЭТА, который при реакции полимеризации может обеспечить саморазогрев эпоксидного состава до 40-50°C градусов, то такие застывшие эпоксидки плавятся уже при 180-250°C градусов, а температуры их разрушения с выходом горючих эфиров наружу и, соответственно, воспламенения, лежит уже в диапазоне температур 490-560°C. Это что касается бытовых эпоксидных смол.

1 Сравнение материалов

Экструзионный пенополистирол (он же утеплитель из Пеноплекса) относится к так называемым «плиточным теплоизоляторам». Изготавливается Пеноплекс путем технологии «экструзии» из материала полистирола.

Благодаря этому способу можно добиться равномерного распределения структуры теплоизоляционного материала, который состоит из огромного количества мельчайших ячеек наполненных воздухом.

Во время изготовления гранулы Полистирола, будущего Пеноплекса, смешиваются при огромных температурах и сильном давлении. Во время этого процесса в смесь добавляют вспенивающий агент, который, по сути, является легким фреоном с двуокисью углерода. Далее производят выдавливание экструдера.

На выходе мы и имеем тот самый Пеноплекс, который обладает достаточно серьезными теплоизоляционными свойствами.

Техноплекс производится несколько иначе и напоминает самоклеющююся фольгированную уплотнительную теплоизоляцию. Он так же, как и Пеноплекс, представляет собой плиточный теплоизоляционный материал. При его создании в экструзионный Пенополистирол добавляют специальные графитные наночастицы.

Благодаря им производимый теплоизоляционный материал еще сильнее снижается в теплопроводности, при этом, к слову, повышается и его прочность.

По сути оба теплоизоляционных материала, что Техноплекс, что Пеноплекс, экологически гарантировано безопасные. Кроме того и Техноплекс, и Пеноплекс относятся к безопасным не горючим материалам. Они практически не растворяются ни в воде, ни в грунте (почве).

Теплоизоляционный материал Пеноплекс

1.1 Прочность материалов

По прочности описываемые материалы легко сравнить, используя специализированное оборудование.

Так по параметру механической прочности на банальное сжатие при десяти процентной деформации теплоизоляционный материал с Пеноплексом, 35 типа, показывает точно такие же итоговые результаты, что и наиболее популярный Техноплекс марки «XPS30-200 Стандарт».

Итоговое значение для Техноплекса и Пеноплекса всегда одно — 250 кПа, что лучше, чем у фольгированного утеплителя. К слову, этот показатель полностью зависит от плотности теплоизоляционных плит.

Предел прочности при сильном статическом изгибе у материала «Пеноплекс» составляет в среднем 0,4 – 0,7 МПа. Точно такой же параметр у изоляции «Техноплекс» равняется показателю 0,3 МПа.

И здесь уже сразу можно сделать итоговый вывод, что Пеноплекс несколько более устойчив к сильному статическому изгибу, так как, что очевидно, выдерживает куда более серьезную нагрузку нежели Техноплекс.

1.2 Рабочие температуры

Рабочая оптимальная температура Пеноплекса находится в диапазоне между -50 и +75 градусами по Цельсию, тогда как оптимальная температура для работы у Техноплекса находится в диапазоне между -70 и +75 градусов по Цельсию.

1.3 Теплопроводность и водопоглощение

Параметр теплопроводности Пеноплекса ориентируется на тип и условия его эксплуатации, но в среднем показатель не превышает 0,028 – 0,031 Вт/мК. Этот же показатель у теплоизоляционного материала «Техноплекс» при таких же условиях эксплуатации приблизительно равен 0,031 Вт/мК.

По существу, оба этих теплоизоляционных материала одинаково эффективны по данному параметру.

Водопоглощение материала «Техноплекс» не превышает показатель в 0,2% по собственному объему за двадцать четыре часа. Тогда как водопоглощение материала «Пеноплекс» при том же условии значительно меньше, и равен всего 0,1% (как у теплоизоляции пробковым утеплителем).

Утеплительные плиты Техноплекс

Кроме того, Пеноплекс, если его погрузить в жидкость на 28 дней, спустя этот промежуток времени в объеме увеличится всего лишь на 0,2%. А это говорит о том, что у Пеноплекса предельно низкий параметр водопоглощения.

Более того, данный теплоизоляционный материал может сохранять свои эксплуатационные свойства даже после огромного количества циклов вида «разморозка – заморозка».

1.4 Ценовой вопрос

Если судить о том, какой лучше материал, Пеноплекс или же Техноплекс, строго по их ценовым показателям, тогда, что очевидно, побеждает теплоизоляционный материал Пеноплекс. И это при том, что разница в цене между ними не превышает 10%.

Однако как бы мало это не казалось, в итоге при приобретении Пеноплекса можно сэкономить достаточно большую сумму денег.

Естественно, что в зависимости от региона и страны цены на данные теплоизоляционные материалы будут несколько отличаться, но в целом тенденция ценового показателя вполне очевидна.

Подытожив можно с уверенностью утверждать, что различий между двумя проверяемыми теплоизоляционными материалами практически не наблюдается.

Показатели горючести некоторых стройматериалов

Приведем параметры огнестойкости популярной строительной продукции:

  • все виды ГКЛ, благодаря большому объему гипса характеризуются высокой огнестойкостью, они выдерживают воздействие открытого пламени от 20 до 55 минут, параметры определяются – Г1, Т1, Д1 и В2, что по совокупности разрешает использовать гипсокартон на объектах любого назначения;
  • дерево характеризует высокая пожарная опасность, его показатели – Г4, РП4, Д2, В3 и Т3, причем древесина горит, как режиме тления, так и открытого пламени, если на объекте используется данный материал, пусть даже для изготовления дверей, его необходимо обрабатывать специальными составами;
  • ДСП относится к классу горючести Г4, хотя в отличие от дерева возгорается и поддерживает огонь хуже – В2, но продукты горения – высоко токсичны Т4, остальные параметры — РП4, Д2, при использовании в строительстве и ремонте, рекомендуется обработка огнезащитой;
  • натяжные потолки из ПВХ относятся к легко воспламеняющимся материалам, но, проходя огнезащитную обработку, приобретают класс Г2, пожароопасность конкретной продукции можно узнать в сопутствующей документации;
  • утепление фасада пенополиуретаном, пенополистиролом, пенопластом или пеноплексом регламентируется СНиП21.01.97, здесь допустима горючесть от Г1 до Г4, воспламеняемость от В1 до В3, в зависимости от конструкционных особенностей, например, необходимости вентилировать, и реализуемой технологии;
  • минеральные кровельные материалы, такие как натуральная черепица, относятся к негорючим, ондувилл – это органика, которая легко воспламеняется и живо горит, поэтому ее применение ограничено требованиями к общей безопасности объекта;
  • сэндвич панели металлические с утеплителем из минеральной ваты – оптимальный вариант для сооружения объектов с высокими требованиями пожарной безопасности, поскольку маркируются НГ, использование листов поликарбоната снижает показатели до Г2 и их применение лимитировано;
  • все виды линолеума относятся к средне горючим материалам, исключение составляет гетерогенный и гомогенный, они принадлежат к КМ2, их другие показатели — РП1, В2, Т3 и Д2, последние модификации разрешается использовать в медицинских и образовательных учреждениях;
  • для объектов с высокими требованиями по пожарной безопасности разработаны специальные виды ламината, например, Parqcolor имеет такие показатели: Г1, РП1, В1, Т2 и Д2.

Марки невоспламеняющейся мин. ваты

Теплоизоляторы на основе мин. ваты, которые не поддаются возгоранию, на рынке есть продукций некоторых наиболее известных торговых марок как нашего, так и заграничного происхождения.

Одной из очень востребованных считается продукция датской компании Rockwool. Изготовитель практикует изготовление утеплителей из базальтовой ваты с температурой плавления от 1000 градусов для увеличения пожарной безопасности и устройства хорошей тепловой изоляции. Плиты изготовителя негорючие, удобные и комфортные в работе.

Для изолирования кровли нередко применяют минеральный негорючий теплоизолятор общего испано-немецкого производства от компании URSA — М-15. Речь идет о качественной стекловолоконной продукции из категории НГ.

Стойкие к большими температурам плиты выпускают и изготовители из нашей страны Технониколь и Изорок, а еще европейские — Knauf и ISOVER.

Стоимость минерального теплоизолятора будет зависеть не только от плотности, но и от показателей горючести, в особенности важного для устройства неопасной тепловой изоляции. Собственно благодаря этому следует быть аккуратными в покупке материалов с необоснованно невысокой ценой

Быстрее всего основная часть их состава — искусственные элементы, не способны сопротивляться очень маленьким температурам, повышающие риск возгорания и распространения огня в помещении.

Негорючая минвата: в каких формах выпускается

Теплоизоляторы из мин. ваты, которые не поддаются возгоранию, доступны в нескольких формах выпуска с хорошими свойствами. Сюда можно отнести:

  • мягкие;
  • полужесткие;
  • жёсткие.

Мягкие плиты из минеральной ваты не поддаются возгоранию, имеют средние плотностные показатели, не очень большой показатель теплопроводимости. Подойдут для применения в конструкциях, не предполагающих большие нагрузки.

Полужесткие плиты из мин. ваты также не поддаются возгоранию, владеют плотностью вдвое превышающей плотность мягких плит, подходят для теплоизоляции вертикальных конструкций.

Жёсткие плиты также, как и предыдущие варианты не поддаются возгоранию, владеют самыми большими показателями плотности. Применяются для утепления конструкций разного типа, весьма популярны для изолирования систем кровли без стяжки из бетона.

Плиты минераловатные из категории негорючих считаются довольно востребованным теплоизолятором. Следом за ними следуют акустические маты также со способностью сопротивляться огню. Основным отличием плит от матов считается структура — прошитые специализированной нитью волокна, образующие собой полотнище, подобное стеганому одеялу. Толщина и длина матов отличаются в зависимости от марки. Положительным качеством матов считается слой защиты из фольги или сетки.

Как плиты, так и маты из категории негорючих ценны для теплоизоляции огнеопасных конструкций. Это могут быть деревянные дома, веранды, бани и др. Благодаря теплоизоляторам из мин. ваты с температурой плавления от 600 градусов Цельсия, возникает возможность обезопасить сооружения и конструкции от повреждения огнём, сделать больше показатели звукопоглощения и сбережения тепла.

Негорючий пеноплекс или пожароопасный утеплитель?

Невысокая огнестойкость считается одним из главных недостатков этого теплоизолятора. На объектах с высокими требованиями по пожарной безопасности, этот утеплитель не используют. Пенополистирол без ингибиторов редко используют в строительстве любых сооружений, он способен загореться от искры или пламени маленькой спички. Только модифицированный, так называемый «негорючий пеноплекс», можно выбрать для строительства дома. Но в любом случае нужно понимать, что в случае пожара нужно будет срочно покинуть помещения. При горении из пенопласта выделяются такие опасные вещества: бромоводород, циановодород, фосген. При попадании в организм человека эти токсины парализуют легкие и нервную систему, приводят к быстрому летальному исходу.

Утепление стен дома

Не стоит использовать пенополистирол для утепления административных, социальных и развлекательных объектов. Пожар в клубе «Хромая лошадь» в Перми, унесший несколько десятков человеческих жизней, во многом обусловлен теплоизоляцией здания из пенопласта. Причина гибели большинства посетителей – отравление токсичными продуктами горения.

Классификация горючих жидкостей

Температура вспышки горючей жидкости является одним из основных параметров для классифицирования, отнесения ГЖ к тому или иному виду.

ГОСТ 12.1.044-89 определяет ее как наименьшую температуру сконденсированного вещества, имеющего над поверхностью пары, что способны вспыхнуть в воздушной среде помещения, или на открытом пространстве при поднесении низкокалорийного источника открытого пламени; но устойчивого процесса горения при этом не возникает.

А самой вспышкой считается мгновенное выгорание воздушной смеси паров, газов над поверхностью горючей жидкости, что визуально сопровождается кратковременным периодом видимого свечения.

Полученное в результате испытаний, например, по ГОСТ Р ИСО 13736-2010 в закрытом лабораторном сосуде, значение Т℃, при которой вспыхивает ГЖ, характеризует ее взрывопожарную опасность.

Важными параметрами для ГЖ, ЛВЖ, указанными в этом государственном стандарте, также являются следующие параметры:

  • Т воспламенения является наименьшей температурой горючих жидкостей, выделяющих горючие газы/пары с такой интенсивностью, что при поднесении источника открытого огня они воспламеняются, продолжая гореть при его изъятии.
  • Этот показатель важен при классифицировании групп горючести веществ, материалов, опасности технологических процессов, оборудования, в которых участвуют ГЖ.
  • Т самовоспламенения – это минимальная температура ГЖ, при которой происходит самовоспламенение, которое в зависимости от сложившихся условий в защищаемом помещении, объекте хранения, корпусе технологического оборудования – аппарата, установки может сопровождаться горением открытым пламенем и/или взрывом.
  • Полученные данные по каждому виду ГЖ, способных к самовоспламенению, позволяет выбирать подходящие типы электрооборудования во взрывозащищенном исполнении, в т.ч. для установок автоматической противопожарной защиты зданий, строений, сооружений; для разработки мероприятий по взрывопожарной безопасности.

Для сведения: «ПУЭ» определяет вспышку быстрым выгоранием горючей воздушной смеси без образования сжатого газа; а взрыв – горением моментального типа с образованием сжатых газов, сопровождающимся появлением большого количества энергии.

Важны также скорость, интенсивность испарения ГЖ, ЛВЖ со свободной поверхности при открытых резервуарах, емкостях, корпусах технологических установок.

ГОСТ 19433-88, регламентирующий классификацию и маркировку всех опасных грузов, относит ЛВЖ к 3 классу с тремя подклассами:

  • 1. ЛВЖ с Т вспышки меньше – 18 ℃. К ним относятся эфиры, ацетон, гексаны, пентаны, авиационный керосин, некоторые марки бензина; по праву считающиеся особо опасными при транспортировке, хранении, сливно-наливных работах, упаковке в герметичную тару.
  • 2. ЛВЖ с температурным диапазоном вспышки от – 18 до + 23 ℃. Это различные спирты, бензол и его химические производные.
  • 3. То же – от 23 до 61 ℃. К ним относят большинство видов жидкого углеводородного топлива, глицерин, смазочные масла.

Хотя жидкие горючие смеси, простые вещества, материалы, входящие в два последних подкласса, не относятся к особо опасным ЛВЖ, требования предосторожности при обращении с ними нисколько не менее строгие; что в большинстве случаев исключает возникновение пожаров на предприятиях, где они производятся, хранятся, а также при транспортировке

Разделение на группы по горючести

Для корректной оценки пожарной безопасности различных материалов и веществ был разработан и введен в действие закон № 123-ФЗ (последняя действующая редакция от 29.07.2017).

Данный нормативный акт дифференцирует все известные материалы на строительные, текстильные и кожевенные и все остальные. Для последних, не относящихся к строительству, текстильной или кожевенной промышленности, используется упрощенная градация по степени пожарной опасности.

Итак, любые вещества и материалы, кроме упомянутых обособленных групп, делятся на горючие, трудногорючие и негорючие.

Первые способны полыхать или тлеть без источника горения, в том числе и загораться самостоятельно, поэтому они представляют высокую пожарную опасность.

Трудногорючие могут гореть, но только при непосредственном контакте с источником пламени. С точки зрения пожарной опасности это не самый худший вариант материалов.

Негорючие вещества или материалы не взаимодействуют для горения с воздухом (или не горят вообще). Но в эту же группу отнесены и те, которые могут образовывать горючие смеси при контакте, например, с водой, а также окислители, например тот же кислород.

Необходимо помнить, что некоторые негорючие вещества способны поддерживать горение или быть взрывоопасными.

Классификация строительных материалов

Определение группы горючести строительного материала

Пожарная опасность строительных, текстильных и кожевенных материалов характеризуется следующими свойствами:

  1. Горючесть.
  2. Воспламеняемость.
  3. Способность распространения пламени по поверхности.
  4. Дымообразующая способность.
  5. Токсичность продуктов горения.

Строительные материалы в зависимости от значений параметров горючести подразделяют по группам на негорючие и горючие (для напольных ковровых покрытий группа горючести не определяется).

НГ негорючие

Негорючие строительные материалы по результатам испытаний по методам I и IV (ГОСТ Р 57270-2016. Материалы строительные. Методы испытаний на горючесть) подразделяют на 2 группы.

Строительные материалы относят к негорючим I группы при следующих среднеарифметических значениях параметров горючести по методам I и IV (ГОСТ Р 57270-2016):

  • прирост температуры в печи не более 30 °C;
  • потеря массы образцов не более 50%;
  • продолжительность устойчивого пламенного горения – 0 с;
  • теплота сгорания не более 2,0 МДж/кг.

Строительные материалы относят к негорючим II группы при следующих среднеарифметических значениях параметров горючести по методам I и IV (ГОСТ Р 57270-2016):

  • прирост температуры в печи не более 50 °C;
  • потеря массы образцов не более 50%;
  • продолжительность устойчивого пламенного горения не более 20 с;
  • теплота сгорания не более 3,0 МДж/кг.

Допускается относить без испытаний к негорючим I группы следующие строительные материалы без окрашивания их внешней поверхности либо с окрашиванием внешней поверхности составами без использования полимерных и (или) органических компонентов:

  • бетоны, строительные растворы, штукатурки, клеи и шпатлевки, глиняные, керамические, керамогранитные и силикатные изделия (кирпичи, камни, блоки, плиты, панели и т.п.), фиброцементные изделия (листы, панели, плиты, трубы и т.п.) за исключением во всех случаях материалов, изготавляемых с применением полимерного и (или) органического вяжущего заполнителей и фибры;
  • изделия из неорганического стекла;
  • изделия из сплавов стали, меди и алюминия.

Строительные материалы, не удовлетворяющие хотя бы одному из вышеуказанных указанных значений параметров I и II группы негорючести, относятся к группе горючих и подлежат испытанию по методам II и III (ГОСТ Р 57270-2016). Для негорючих строительных материалов другие показатели пожарной опасности не определяют и не нормируют.

Горючие строительные материалы в зависимости от значений параметров горючести, определяемых по методу II, подразделяют на четыре группы горючести (Г1, Г2, Г3, Г4) в соответствии с таблицей. Материалы следует относить к определенной группе горючести при условии соответствия всех среднеарифметических значений параметров, установленных таблицей для этой группы.

Г1 слабогорючие

Слабогорючие – это материалы, имеющие температуру дымовых газов не более 135 °C, степень повреждения по длине испытываемого образца не более 65 %, степень повреждения по массе испытываемого образца не более 20 %, продолжительность самостоятельного горения 0 секунд.

Г2 умеренногорючие

Умеренногорючие – это материалы, имеющие температуру дымовых газов не более 235 °C, степень повреждения по длине испытываемого образца не более 85 %, степень повреждения по массе испытываемого образца не более 50 %, продолжительность самостоятельного горения не более 30 секунд.

Г3 нормальногорючие

Нормальногорючие – это материалы, имеющие температуру дымовых газов не более 450 °C, степень повреждения по длине испытываемого образца более 85 %, степень повреждения по массе испытываемого образца не более 50 %, продолжительность самостоятельного горения не более 300 секунд.

Г4 сильногорючие

Сильногорючие – это материалы, имеющие температуру дымовых газов более 450 °C, степень повреждения по длине испытываемого образца более 85 %, степень повреждения по массе испытываемого образца более 50 %, продолжительность самостоятельного горения более 300 секунд.

Таблица

Группа горючести материалов Параметры горючести
Температура дымовых газов T, °C Степень повреждения по длине SL, % Степень повреждения по массе Sm, % Продолжительность самостоятельного горения tc.г, с
Г1 До 135 включительно До 65 включительно До 20
Г2 До 235 включительно До 85 включительно До 50 До 30 включительно
Г3 До 450 включительно Свыше 85 До 50 До 300 включительно
Г4 Свыше 450 Свыше 85 Свыше 50 Свыше 300
Примечание. Для материалов, относящихся к группам горючести Г1-Г3, не допускается образование горящих капель расплава и (или) горящих фрагментов при испытании. Для материалов, относящихся к группам горючести Г1-Г2, не допускается образование расплава и (или) капель расплава при испытании.

Критерии выбора стекловаты


Собираясь приобретать этот утеплитель, имейте в виду определенные нюансы, чтобы стекловата была качественной и прослужила как можно дольше:

Прежде всего, обратите внимание на упаковку, в которой хранится теплоизолятор. Она должна быть прочной и целой

Крайне не рекомендовано, чтобы на материал попадали атмосферная влага или солнечные лучи в процессе хранения.
Качественный материал имеет светло-желтый цвет и однородную структуру.
Учитывайте плотность и толщину стекловаты. Наиболее распространенная плотность — 11 килограммов на кубометр. Этот утеплитель оптимально подойдет для изоляции горизонтальных ненагружаемых конструкций: полы с лагами, перекрытия, кровли.
Для теплоизоляции скатных кровель, перегородок и внутренних стен предназначен материал с плотностью 15 кг/м3 и более.
Если предполагается слоистая кладка, то лучше всего использовать утеплитель плотностью от 20 килограммов на метр кубический.
Для теплоизоляции наружных стен подходит штапельное стеклянное волокно плотностью от 30 килограммов на кубометр.
Рекомендовано также, чтобы стекловата была кэширована стеклохолстом. Последний защитит волокна от выдувания и придаст материалу дополнительную прочность.

Как работать с эпоксидной смолой

Для работы с эпоксидной смолой понадобится отвердитель, одноразовый стаканчик, 2 шприца и палочка для перемешивания.

Инструкция по применению:

Возьмите шприц, наберите в него необходимое количество смолы и выпустите в стаканчик. То же самое проделайте с отвердителем. Пропорции смешивания у разных производителей различны, потому перед началом работы внимательно прочитайте инструкцию по применению. Неправильно разведенная эпоксидка плохо застывает.
Хорошенько перемешайте смолу с отвердителем, масса должна стать однородной

Смешивать необходимо медленно и осторожно, если делать это резкими движениями и быстро, то в массе появятся пузырьки. Жидкая консистенция состава обеспечит быстрый выход пузырьков наружу, в изначально густых компонентах они останутся

Плотность смолы зависит от производителя. Недостаточно хорошо смешанные компоненты обусловят плохое застывание состава.
Полимеризация не происходит мгновенно, необходимо немного подождать пока масса приобретет требующуюся для работы консистенцию.
Залейте в форму или сделайте линзу.
Подождите указанное производителем в инструкции время, пока эпоксидная смола окончательно застынет.

Эпоксидная смола имеет условные стадии застывания:

  1. Вначале масса очень жидкая и легко стекает, что делает ее максимально подходящей для заливки в форму. Жидкая консистенция позволяет эпоксидке проникнуть в мельчайшие углубления, более густому составу это не под силу, и рельеф получится не очень явным.
  2. По прошествии некоторого времени эпоксидная смола становится гуще и подходит для изготовления выпуклых линз на плоской основе. Сделать подобную линзу из жидкой смолы не удастся — состав будет скатываться вниз с заготовки. На этой стадии лучше всего заливать нерельефные формы в домашних условиях.
  3. Наименее подходящая консистенция смеси для работы — наподобие густого меда. При набирании эпоксидки на палочку легко формируются пузырьки, убрать которые очень сложно. На этой стадии состав подходит для того, чтобы склеить детали между собой. Эпоксидка характеризуется отличной адгезией и прекрасно прилипает к большинству материалов (на основе этого свойства был разработан клей ЭДП.), но легко отслаивается от полипропилена, полиэтилена, силикона, резины, поверхностей, покрытых пленкой жира.
  4. Эпоксидная смола становится очень густой и липкой, отделить немного от основной массы проблематично.
  5. Следующая стадия — резиновая. Эпоксидка не прилипает к рукам, но легко мнется и гнется, из нее получится сделать множество изделий, но если вы хотите, чтобы она затвердела в нужном положении, то закрепите ее, иначе она вернется в первоначальное состояние.
  6. Окончательно затвердевшая эпоксидная смола. Ее нельзя продавить ногтем, на ощупь она похожа на пластик.

Эпоксидна смола от разных производителей характеризуется различным временем отвердения. Время наступления стадий определяются исключительно опытным путем. Существует мягкая эпоксидная смола, которая остается резиновой даже после полного застывания, что для некоторых изделий является идеальным вариантом.

Изучаем огонь на собственной кухне

Кухонные газовые плиты работают на двух видах топлива:

  1. Магистральный природный газ метан.
  2. Пропан–бутановая сжиженная смесь из баллонов и газгольдеров.

Химический состав топлива определяет температуру огня газовой плиты. Метан, сгорая, образует огонь мощностью 900 градусов в верхней точке.

Сжигание сжиженной смеси даёт жар до 1950°.

Внимательный наблюдатель отметит неравномерность раскраски язычков горелки газовой плиты. Внутри огненного факела происходит деление на три зоны:

  • Тёмный участок, расположенный возле конфорки: здесь нет горения из-за недостатка кислорода, а температура зоны равна 350°.
  • Яркий участок, лежащий в центре факела: горящий газ разогревается до 700°, но топливо сгорает не до конца из-за недостатка окислителя.
  • Полупрозрачный верхний участок: достигает температуры 900°, и сгорание газа полноценное.

Цифры температурных зон огневого факела приведены для метана.

Самовоспламеняющиеся материалы

К самым известным веществам, способным к самовозгоранию и поэтому обладающим повышенной пожарной опасностью, относятся:

  • бурый уголь;
  • торф;
  • древесные опилки;
  • минеральное масло;
  • белый фосфор;
  • эфир;
  • скипидар.

Эти вещества могут самостоятельно загореться, всего лишь контактируя с воздухом. Некоторые из них, как, например, бурый уголь и белый фосфор, вспыхивают при нормальной температуре, другим требуется нагрев окружающей среды для запуска реакции. В соответствии с ГОСТ 12.1.011-78 о классификации взрывоопасных смесей, все подобные элементы делятся на группы по температуре самовоспламенения. Группа Т6 присвоена веществам с наименьшей температурой самовозгорания в пределах 85 ℃, Т1 — с наибольшей, свыше 450 °.

Некоторые вещества загораются при контакте не с атмосферным воздухом, а, например (и как это ни странно) с водой. К ним относятся натрий, гидриды кальция и магния, смесь йода и цинка.

Другие группы веществ могут вспыхивать при контакте с сильными кислотами, например с азотной.

Самовозгорание не всегда сопровождается пламенем. В частности, торф или опилки, контактируя с атмосферой, могут медленно тлеть, образовывая большое количество дыма, но почти не выделяя пламени.

Автор статьи
Альбина Мухина
Дизайнер по образованию, работает в известной московской строительной компании. Увлекается современными стилями оформления интерьера.
Написано статей
456
Понравилась статья? Поделиться с друзьями:
Зеркальный потолок
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: